Adaptation, coordination and distributed resource allocation in interference-limited wireless networks

Keynote speech ISWCS'07 Conference, Trondheim 17 October 2007

Prof. David Gesbert

Mobile Communications Dept., Eurecom Institute gesbert@eurecom.fr www.eurecom.fr/~ gesbert

Thanks to my collaborators!

Wireless research a la Carte

multicell MIMO, resource alloc.,..

Outline

- Cooperation vs. coordination
- Cellular vs. adhoc networks
- User vs. infrastructure cooperation
- Coding-based vs. resource allocation-based cooperation
- Some interesting cases
- Open problems

Cooperation vs. coordination

Two fundamental limitations:

- Fading limits the communication rate of any point to point link.
- Interference limits the reusability of spectral resource in space.

Cooperation schemes:

- Pooling Degrees of Freedom of many transceivers into a single basket.
- Optimizing the degrees of freedom to maximize rates, reliability and reuse.
- Several performance metrics. We choose Network's sum throughput.

Non-cooperating network

Cooperating network

Cellular vs. Adhoc

- "cellular": Users connect to an infrastructure point, close-by.
- "Adhoc": Destinations are other abitrary located users.

User-based cooperation (conventional)

• Conventional source-relay-destination framework emphasizes diversity gain for the source user.

Mutual cooperation

- Mutual cooperation balances benefit of relaying vs. overhead.
- Goal is to maximize Rate user1 + Rate user2.

Mobile 1 (source+ relay for mobile 2)

A mutual cooperation protocol

Assumptions:

- Non-orthogonal Amplify-Forward protocol (NAF) [1]
- Each mobile divides its power across relay and own transmission tasks over time
- User 1 allocates α Watts for relaying user 2's data, keeps 1α for own transmission.
- User 2 allocates β Watts for relaying user 1's data, keeps 1β for own transmission.

[1] [Azarian, El Gamal, Schniter] Trans IT 05.

Expression of sum rate (mobile 1 + mobile 2)

Lemma: For the Gaussian memoryless multiple-access channel, the sumrate is such that $R1 + R2 \le I_{\alpha,\beta}$ where [2]

$$I_{\alpha,\beta} = log_2 \left[1 + \gamma_{01} + (1 - \alpha) \frac{K_1}{l_1(\beta)} + f(\beta \gamma_{02}, \gamma_{21}) \right] \\ + log_2 \left[1 + \gamma_{02} + (1 - \beta) \frac{K_2}{l_2(\alpha)} + f(\alpha \gamma_{01}, \gamma_{12}) \right]$$

where

$$K_{1} = \begin{bmatrix} \gamma_{01}^{2} + \gamma_{01} \\ \gamma_{02}^{2} + \gamma_{02} \end{bmatrix} \begin{bmatrix} \gamma_{21} + 1 \\ \gamma_{12} + 1 \end{bmatrix}$$
$$l_{1}(\beta) = 1 + \gamma_{21} + \beta \gamma_{02}$$
$$l_{2}(\alpha) = 1 + \gamma_{12} + \alpha \gamma_{01}$$
$$f(x, y) = \frac{xy}{x+y+1}$$

[2] [Tourki, Gesbert, Deneire] ISIT'07

Mutual cooperation is selfish!

Lemma: Optimal power allocation is given by either [2]

1.
$$\alpha = \alpha_* \neq 0$$
 and $\beta = 0$ if
$$\begin{cases} \gamma > \gamma_{02}^2 + \gamma_{02} \\ \gamma_{01} > \frac{(1+\gamma_{02})^2(1+\gamma)}{\gamma - (\gamma_{02}^2 + \gamma_{02})} - 1 \end{cases}$$

2. $\alpha = 0$ and $\beta = \beta_* \neq 0$ if
$$\begin{cases} \gamma > \gamma_{01}^2 + \gamma_{01} \\ \gamma_{02} > \frac{(1+\gamma_{01})^2(1+\gamma)}{\gamma - (\gamma_{01}^2 + \gamma_{01})} - 1 \end{cases}$$

3. $\alpha = 0$ and $\beta = 0$ if neither condition above is met. At most one user cooperates with the other one: (\Rightarrow opportunistically selfish behavior!)

[2] [Tourki, Gesbert, Deneire] ISIT'07

Infrastructure-based cooperation

Levels of infrastructure cooperation

Several levels:

- Coding, signal processing level
 - Data routed to multiple access points
 - Optimum use of the available radio links
 - Centralized control required
- Resource allocation level
 - Data routed to a single access point
 - Interference is a problem but reduced coordinated power control and scheduling
 - Scalable with network size
 - Distributed solutions?

coding, signal processing-based cooperation

Interference \Rightarrow Energy \Rightarrow Additional data pipe \Rightarrow good for you!

Capacity of Multicell MIMO can be reached as regular multi-user MIMO capacity with additional power constraints [3][4]

[3] [Shamai, Zaidel] VTC'01[4] [Karakayali, Foschini, Valenzuela, Yates] ICC'06

Gesbert - ISWCS07 Keynote speech

MIMO vs. Multicell MIMO

Three cell MIMO network

Rate performance without (left) and with MIMO cooperation (three sectors in hexagon)

(a) Without coop

(b) With coop

Multi-cell MIMO in practice

- Gives significant advantage for edge-of-cell users if hard fairness is enforced.
- Easy to implement for small subnets (2 cells)
- Many cells cooperating may be difficult due to inter-cell CSI overhead
- Routing in backhaul must be optimized
- Dynamic clustering can be a solution

Multi-cell multiplexing with Dynamic clustering [5]

[5] [Papadogiannis, Gesbert] ICC'08 Submitted

Resource allocation-based cooperation

Motivations:

- Multicell-MIMO is not scalable.
- Distributed MIMO signal processing hard.
- Broadcast routing of data not always desirable.
- Can we achieve cooperation gains without it?

Remaining degrees of freedom:

- Delay (equivalently user scheduling)
- Power
- bandwidth

Centralized resource allocation

Optimal scheduling and power control

Searching over all scheduling vectors U and power vectors P:

$$(\boldsymbol{U}^*, \boldsymbol{P}^*) = \arg \max_{\substack{\boldsymbol{U} \in \Upsilon\\ \boldsymbol{P} \in \Omega}} \mathcal{C}(\boldsymbol{U}, \boldsymbol{P}),$$
(1)

where:

$$C(\boldsymbol{U},\boldsymbol{P}) \stackrel{\Delta}{=} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \Gamma([\boldsymbol{U}]_n,\boldsymbol{P}) \right).$$
(2)

and the SINR in cell n is:

$$\Gamma([\boldsymbol{U}]_n, \boldsymbol{P}) = \frac{G_{u_n, n} P_{u_n}}{\sigma^2 + \sum_{i \neq n}^N G_{u_n, i} P_{u_i}},$$
(3)

© Eurecom Oct 2007^E U R E C O M

A surprising result for two cells

Theorem:

For two cells, the optimum power allocation is ON-OFF:

$$\arg \max_{(P_1, P_2) \in \Delta \Omega^2} C(U, (P_1, P_2)) = \arg \max_{(P_1, P_2) \in \Omega} C(U, (P_1, P_2))$$
(4)
where $\Delta \Omega^2 = \{(P_{max}, 0), (0, P_{max}), (P_{max}, P_{max})\}$

[6] [Gjendemsjoe, Gesbert, Oien, Kiani] IEEE Trans. Wireless Comm. to appear.

But we want...distributed resource allocation

24

Paths toward distributed allocation [7]

- Game theoretic approaches
- Stastical optimization approaches
- Optimization under ON-OFF power control model
- Optimization in the large number of user case

[7] [Gesbert, Kiani, Gjendemsjoe, Oien] Proceedings of the IEEE, 2007.

25

Game theoretic approaches

The non-cooperative power control game [8][9] writes

 $\max_{0 \le p_n \le P_n^{\max}} f_n(p_n, \mathbf{p}_{-\mathbf{n}}) \ \forall \ n.$

or with pricing

$$\max_{0 \le p_n \le P_n^{\max}} \{f_n(p_n, \mathbf{p}_{-\mathbf{n}}) - c_n(p_n)\} \forall n.$$

where f_n is selfish utility of user *n*. Nash equilibrium may not maximize network utility.

Cooperative games lead to Nash bargaining equilibrium, socially more optimal, but non-distributed.

[8] [Meshkati, Poor, Schwartz] IEEE SP Magazine 2007[9] [Goodman, Mandayam] IEEE Personal Comm. Mag 2000

Optimization under ON-OFF power control

Let \tilde{N} is the number of active cells, assumed large.

Cell m weighs its capapcity contribution to the system against the interference it generates:

Cell m is activated if (Capacity (with cell m) > Capacity (without cell m)), that is if

$$\Gamma([\boldsymbol{U}]_n, \boldsymbol{P}) \geq \frac{\prod_{\substack{n \in \mathcal{N} \\ n \neq m}} \sum_{\substack{i \neq n \\ i \in \mathcal{N}}} P_i}{\prod_{\substack{n \in \mathcal{N} \\ n \neq m}} \sum_{\substack{i \neq n \neq m \\ i \in \mathcal{N}}} P_i} = \left(\frac{\tilde{N} - 1}{\tilde{N} - 2}\right)^{(\tilde{N} - 1)} \approx \boldsymbol{e}$$

Leads to opportunistic reuse patterns.

Static reuse patterns

Opportunistic reuse pattern

Opportunistic reuse pattern

Opportunistic reuse pattern

Capacity performance vs. number of users

The large number of users case

- We let number of users per cell grow asymptotically
- System capacity will grow with number of users
 - ⇒ (multi-user multi-cell diversity!)
- What is the loss due to interference ?
- What can we achieve with a distributed scheme (power control + scheduling)?

[Gesbert, Kountouris] IEEE Trans. IT 2007, submitted

A bounding approach

We study two bounds on capacity:

- Upper bound obtained with no interference
- Lower bound obtained with full powered interference

In three network scenarios:

- 1. All users have same average received power (located on circle around the base)
- 2. Users uniformly located in the cell
- 3. Users uniformly located but cannot get too close to the base

Upper bound on capacity: No interference

$$\mathcal{C}(\boldsymbol{U}^*, \boldsymbol{P}^*) \le \mathcal{C}^{ub} = \frac{1}{N} \sum_{n=1}^{N} \log\left(1 + \Gamma_n^{ub}\right).$$
(5)

where the upper bound on SINR is given by:

$$\Gamma_n^{ub} = \max_{u_n = 1..U} \{ G_{u_n, n} \} P_{max} / \sigma^2$$
(6)

The corresponding scheduler is the max SNR scheduler: Fully distributed

Lower bound on capacity: Full interference

$$\mathcal{C}(\boldsymbol{U}^*, \boldsymbol{P}^*) \ge \mathcal{C}^{lb} = \mathcal{C}(\boldsymbol{U}^*_{FP}, \mathbf{P}_{max})$$
(7)

 $oldsymbol{U}^*_{FP}$ is the optimal scheduling vector assuming full interference, defined by

$$[\boldsymbol{U}_{FP}^*]_n = \arg\max_{\boldsymbol{U}\in\Upsilon} \left(\Gamma_n^{lb} = \frac{\{G_{u_n,n}\}P_{max}}{\sigma^2 + \sum_{i\neq n}^N G_{u_n,i}P_{max}} \right)$$
(8)

The corresponding scheduler is the max SINR scheduler: Also fully distributed

Capacity scaling for symmetric network

Capacity scaling with many users $(U \rightarrow \infty)$

In the interference-free case (using extreme value theory):

Lemma: For fixed N and U asymptotically large, the upper bound on the SINR in cell n scales like

$$\Gamma_n^{ub} \approx \frac{P_{max}\gamma_n}{\sigma^2} \log U \tag{9}$$

Theorem: For fixed N and U asymptotically large, the average of the upper bound on the network capacity scales like

$$E(\mathcal{C}^{ub}) \approx \log \log U \tag{10}$$

Capacity scaling with many users $(U \rightarrow \infty)$

In the full powered interference case (using extreme value theory):

lemma: For fixed N and U asymptotically large, the lower bound on the SINR in cell n scales like

$$\Gamma_n^{lb} \approx \frac{P_{max}\gamma_n}{\sigma^2} \log U \tag{11}$$

theorem Then for fixed N and U asymptotically large, the average of the lower bound on the network capacity scales like

$$E(\mathcal{C}^{lb}) \approx \log \log U$$
 (12)

System with and without interference have same growth rates!

Interpretations

- Interference creates vanishing loss for large number of users
- Physically, the max-rate resource allocator looks for users which are
 - shielded from interference and
 - with large SNR
- When number of users is large, interference becomes small compared with noise.

Capacity scaling for symmetric network

Scaling of upper and lower bounds of capacity, versus U for a symmetric network (N = 4)

Capacity scaling for non-symmetric network

Important: Path loss fading has heavy tail behavior while Rayleigh fading has not

Capacity scaling for non-symmetric network

From extreme value theory of heavy-tailed random variables:

Theorem: The upper bound on capacity will behave like:

$$E(\mathcal{C}^{ub}) \approx \frac{\epsilon}{2} \log U \text{ for large } U$$
 (13)

Theorem: The lower bound on capacity will behave like:

$$E(\mathcal{C}^{lb}) \approx \frac{\epsilon}{2} \log U$$
 for large U (14)

Capacity scaling for non-symmetric network

Scaling of upper and lower bounds of capacity, versus U for a non-symmetric network (N = 4)

Capacity scaling for hybrid network

Users excluded from disk with radius 5 percent of cell radius.

Scaling of upper and lower bounds of capacity, versus U for a hyrbid network (N = 4)

Conclusions

- Large number of users reveals simple structure of the resource allocation problem:
 - Fully ditributed solution possible
 - Price paid due to interference is small
- QoS-oriented scheduling will give different results

Open problems

Cooperation creates gains and challenges:

- May affect routing
- Easier with infrastructure based cooperation (than user-based)
- In theory, each user receives tiny bits of information through everybody else.
- In practice, optimization must be distributed to keep information exchange local
- More issues: Synchronization, QoS guarantee issues
- Promising avenue: A two-scale optimization within a single network
 - Small scale: coding, signal processing based cooperation (multicell MIMO)
 - Large scale: resource allocation-based

