
©
20

07
 T

he
 M

at
hW

or
ks

, I
nc

.

Development of
complex wireless systems

requires
new development technologies

Dr. Hans Martin Ritt
Senior Teamleader Application Engineering
Martin.Ritt@mathworks.com

The MathWorks GmbH
Adalperostr. 45
D-85737 Ismaning (Munich)

Industry Trends:
Wireless Communication Systems

Multiple target technologies
Digital and analogue hardware
Embedded software/firmware
Shifting partitioning boundaries

Performance, cost, development time trade-offs

Process challenges
Iterate between algorithms and implementation
IP portability and reuse
Increasing cost of design flaws

Systems Are Becoming More Complex

Just adding more head count doesn’t help:
“Brooks' Law”, often summarized as:
“Nine women cannot have a baby in one month”

Hardware is becoming more complex

Source: EDN

0

2 0 0

4 0 0

6 0 0

8 0 0

10 0 0

12 0 0

14 0 0

16 0 0

18 0 0

19 9 0 's 2 0 0 2 3 G 2 0 10

KLOCS En gin eer in g M an M on t hs

Source: Bob Frankel, Chief SW strategist & TI Fellow

Software is becoming more complex

Theses

1. Increasing the level of abstraction increases the
productivity

Do not reinvent the wheel
Challenge: trade-off development effort against optimal
performance

2. Start to adapt the “computer” to the application
Single source cannot mean single language
There is not a single best “language” for everything

3. Iterative development
Early verification
Flexible partitioning
Challenge: Moving between abstraction levels

Increase level of abstraction
MATLAB Vs C/C++

C Code
Bits spread=addChips(diffOut[slice(i,1)]);

Bits

IEEE802_11b_Transmitter::addChips(const Bits& input) {

Bits spreadOut(input.size()*Ns,false);

for (int i=0;i<input.size();++i){

for(int j=0; j<11; ++j) {

spreadOut[i*Ns+4*j]= m_chip[j]^input[i];

}

}

return spreadOut;

}

M Code
Tx_chips=reshape(Barker*Tx_symbols',[],1);
Tx_samples(1:Samples_per_chip:end)=Tx_chips;

Abstraction: Graphical Design vs. Hand-coding

Simulation of graphical model
automatic synchronisation of calculations
handling of signals/data

Easy start with prebuild standard-functions

Complex Timing and Concurrency

Complex timing
Feedback
Asynchronous edge
triggered blocks
Multi-rate digital with
arbitrary sample rates

Concurrency
True expression of
parallelism
Important for whole
system or hardware sub-
system design

Possible pitfalls

Model-Based Design including graphical entry is more
than graphical programming

There is no productivity gain, if you
draw what you would write in a program
try to tweak the code generator to generate the code you
already have in your mind

Long time goal of this next abstraction level is to
eliminate the need to review in detail code in C, HDL,
etc…(like today ASM, Gate-level,…)

Theses

1. Increasing the level of abstraction increases the
productivity

Do not reinvent the wheel
Challenge: trade-off development effort against optimal
performance

2. Start to adapt the “computer” to the application
Single source cannot mean single language
There is not a single best “language” for everything

3. Iterative development
Early verification
Flexible partitioning
Challenge: Moving between abstraction levels

Model Different Components different

Analog/Mixed-Signal
PLLs, data
converters
Continuous time,
variable-step ODE
solvers

Analog/M-S MAC,
Control LogicDigital Signal

Processing

DSP Baseband
Discrete time, fast
frame-based
processing. Bit-true
cycle accurate.

MAC layer/Data Link Layer
Simple protocols,
acknowledgement
schemes
Reactive or event driven
state machines

Multi-Domain System level model

Long Preamble

Long Header CRC

Data Scrambler

Short Preamble

Short Header CRC

System Architect: “For some pieces a block
diagram is appropriate…”

Data Buffer

R. Durrant, Intel, 802.11b system block diagram, Jan 2002.

Limitations of C and M for System Design
No architecture information

Can only model a pipeline
Can’t describe a real system

No timing information
Can only model uniform Fs
Difficult to model delays
Must manually handle state
Can’t model A/M-S
Difficult to model Rx
algorithms

For system level models this is
critical

Demodulator
De-Spreader

1 Mbps DBPSK

Demodulator
De-Spreader

2 Mbps DQPSK

Demodulator
De-Spreader

5.5 Mbps CCK

Demodulator
De-Spreader

11 Mbps CCK

IF
Filter

Frequency
Shift

Control

Chip and Bit
Synchronization

Channel

=

“…but not for other pieces”

Block diagrams are an unnatural
way to express some equations

P(n)=(P(n-1)-G(n)u^H(n)P(n-1))/lambda

“For these pieces, equations are better…”
uwH

ny =

nn yde −=

Δuu
ΔuG H+

=
λ

)(1 ΔGuΔΔ H−←
λ

*eGww +←

Output:

Error:

Gain
vector
(Mx1):

Inv. corr.
matrix
(MxM):

Weight
update
(Mx1):

?

Statechart: 802.11a Adaptive modulation
Physical layer
Adaptive Modulation Control
Error rate calculation
Visualization

Circuit diagram

Analog/Mixed Signal
Feedback control loops,
VCOs, PLLs, phase detectors

Thesis

The competence people have developed in
“programming”/coding make them sceptical reagarding
alternative entries

Software development tools will further reduce the
need to transform system descriptions from the “human
style” to the “computer style”
This is only possible if we leave behind the ideal of a
single language for all

Single source in various languages

Distributed and parallel computing

Computer ClusterComputer Cluster

Scheduler

CPU

CPU

CPU

CPU

Job

Task

Task

Task

Task

Result

Result

Result

Result

Result

Client MachineClient Machine

Writing a parallel application

>> matlabpool
clear A
parfor (i = 1:8)

A(i) = i;
end
A
matlabpool close

Parfor
parallel for loop to run in MATLAB or a matlabpool

Theses

1. Increasing the level of abstraction increases the
productivity

Do not reinvent the wheel
Challenge: trade-off development effort against optimal
performance

2. Start to adapt the “computer” to the application
Single source cannot mean single language
There is not a single best “language” for everything

3. Iterative development
Early verification
Flexible partitioning
Challenge: Moving between abstraction levels

Source: “Migration from Simulation to Verification with
ModelSim®” by Paul Yanik. EDA Tech Forum, 2004 Mar 11,
Newton MA

How to catch errors early?

0%

5%

10%

15%

20%

25%

30%

35%

40%

Require-
ments

Concept
R&D

System
Design

Component
Design

Implementation

Made
Detected “…each delay in the

detection and
correction of a
design error makes
it an order of
magnitude more
expensive to fix…”

Clive Maxfield and Kuhoo Goyal
“EDA: Where Electronics Begins”

TechBites Interactive, October 1, 2001
ISBN: 0971406308

Early verification

Consider algorithm in its
implementation environment
Use tools to optimise algorithm
conversion
Speeds up the design cycle

Easy to switch back and forth

Separate the algorithm from the
implementation details

Start

Model
Signal source

Design
DSP algorithm

Requirements
Met?

Production
Specification

yes

no

Simulation

Iterative Design flow
Top-Down

Rapid prototyping
Optimize by parameterizing the code generation

Bottom-Up
Reuse optimized IP

Design flow:
Create a system model
Generate for a module

C Code - Analyze performance
HDL Code - Analyze performance

Decide on the implementation method per module
Optimize the performance per module

Adapt code generation
Manually optimize and reintegrate the code – Bottom-up

Analog components

Analog components

Flexible partitioning

C-Code GenerationC-Code Generation

HDL Codegeneration

HDL Codegeneration

FPGA & ASIC

DSP & µC

Single source in various “languages”

Implementation trade-off

Blocks can have more than one implementation
Gain

hdldefaults.GainMultHDLEmission
hdldefaults.GainFCSDHDLEmission
hdldefaults.GainCSDHDLEmission

Lookup Table
hdldefaults.LookupHDLInstantiation
hdldefaults.LookupHDLEmission

…

Limitations: Abstract Modeling

Efficient but abstract
Challenge: There is no way to easily switch between detailed and
abstract model

Conclusion

Model-Based Design puts
modeling and simulation at the
center of system design

Increased abstraction =
Increased productivity

Make the computer understand
the “human” input

Iterative design for optimized
system+process performance

Questions?

See us at our booth

Thank you for your attention

	Development of �complex wireless systems �requires �new development technologies
	Industry Trends: �Wireless Communication Systems
	Systems Are Becoming More Complex
	Theses
	Increase level of abstraction �MATLAB Vs C/C++
	Abstraction: Graphical Design vs. Hand-coding
	Complex Timing and Concurrency
	Possible pitfalls
	Theses
	Model Different Components different
	System Architect: “For some pieces a block diagram is appropriate…”
	Limitations of C and M for System Design
	“…but not for other pieces”
	“For these pieces, equations are better…”
	Statechart: 802.11a Adaptive modulation
	Circuit diagram
	Thesis
	Distributed and parallel computing
	Writing a parallel application
	Theses
	How to catch errors early?
	Early verification
	Iterative Design flow
	Flexible partitioning
	Implementation trade-off
	Limitations: Abstract Modeling
	Conclusion

